Can cluster physics shed some light on the puzzles of our
Experimental findings with energetic particles?

K.Zankel

Introduction
Leakage current /
Carrier removal / ??2clusters???
Annealing /

1. Cluster formation
(Vinetskii and Kondrachuk in Rad. Effects 1975, vol.30 p227)

first stage: high-energy particles displace matrix atoms
point defects: vacancies(V), interstitials(I)

second stage: diffusion of vacancies and interstitials
quasimolecules (secondary radiation defects)
Model for second stage: :
Mobility of I>>V
2 reactions V+V — D  reaction constants
V+0 T A op , xa
Diffusion equation for vacancies and reaction equation
for Oxygen and initial conditions at center of cluster N
system of nonlinear equations
dimensionless parameter
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SV A &
L characteristic size of cluster - C)c.D
N and L depend on incident particle, while and-
Depend on crystal properties

a) & <<1 low vacancy diffusion —» congealing cluster
shape of D-cluster ~ V-cluster (original)
b) £ >>1 high vacancy diffusion — spreading cluster




belt of A centers around D-cluster
energy threshold of knock-on atom between 2 cases 10keV

2.Properties of cluster

2.1 structure — central region (core): vacancies +
interstitial associations

peripheral region (impurity defect shell)
bell shape of distribution

2.2 electrical field center: charged D depending on Fermi level
periphery: charged impurity defects
local charge neutrality: (acceptors, donors,
free carriers) '

Poisson equation + charge neutrality—selfconsistent system
which yields occupation probability of acceptors .

and potential barrier / between matrix and center of cluster
Approximate solution of Poisson equation
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where r is radius of cluster and /) Eenergy position of
defect in forbidden bandgap

N . density of defect




2.3 Parameter description

Kuznetsov and Lugakov, phys.stat.sol(a) vol.79, p381 (1983)

Temperature dependencies of Hall coefficient + nature of

defect
Defect cluster parameters in n-Si
irradiation material n, core periphery
(1012 cm™3) . . .. — :

p (¢V) radius  radiation p (eV): radius radiation
defect (A defect
density density
(em™?%) (cm™3)

neutrons  float-zone 3 =014 = 130 =8 X 10V ~0.03 600 =1.7 X 1018
neutrons  pulled 2 =014 =~ 130 =8 x10¥ 0.05 300 1.2 x 10%
protrons  float-zone 1 0.11 1800 7 x 1018 0.02 15000 2.7 x 10v
protons  float-zope 3 0.11 1800 7 X 1018 0.023 13000 4.3 x 101
protons float-zone 8 0.11 1800 7 x 1018 0.025 12000 5.8 x 1013
protons  float-zone 1.6 0.11 1800 7 X 101 0.03 9000 1.6 x 10
protons  pulled ~ 2 0.11 1800 7 x 10 0.03 6000 2.8 x 10U
protons  pulled 5 0.11 1800 7 % 1088 0.033 6000 2.8 x 104
protons pulled 30 0.11 1800 - 7 X 10 0.04 5000 5.3 x 10u
2.4 Strain field
Deposited energy ~10000 eV in
a cluster volume ~10E-18 cm-3
Temperatur diff ~1000 K
Fast coolingin  ~10E-10s
Pressure ~10000 bar
2.5 Divacancy levels in cluster ,
A.V. Vasil'ev et al. Sov.Phys.Semicond. vol.20(4) p465

(1986)

For locally inhomogeneous distribution of deep levels

My = N M [FSRT £-80) oV
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where
v
and :f(T,- -E’["" Ed >" occupancy
/\/d- Volume average concentration of charged
center

M. Concentration of local region
Analysis performed with following assumptions

-homogeneous distribution of D in matrix +embedded local
regions with M divacancies in it.
-bell shape of initial cluster

Eer) = 'TW:,‘L’— 6‘*]/’( ’ﬁ/L’L)

-only divacancy level E; -0.39 eV e a‘afr,.roo/
- N depends linearly on dose h
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FIG. 1. Values of An/¢ obtained at temperaturcs 250-450 K.for z?;u:-
grown (1) and crucible-grown (2-4) samples. Radiat}én dose ¢ (10" cm ™)
1), 2) 0.5; 3) 1.0; 4) L.5. The experimental polnts: wcrc taken from Ref. 1.
The continuous curves are theoretical dc.pcndcnccs calculated on the as-

.. sumption of 2 locally inhomogcncous distributlon of divacancies In a crystal
(Table 1) m_ 5. 10

. . .




3. Consequences for ROSE problems

3.1 Carrier Recombination
Most likely recombination centers are D
Problem of capture coefficient for free carriers
If there is a potential barrier built-up inside cluster:
Holes attracted into interior
Electrons pushed to matrix depletion

Then effective capture cross section for holes

57 =6, exp(r) K

Kis a factor for fact that potential barrier{/ is not abrupt but
extends to a Debeye screening length
for the case that this length is smaller than outer cluster
radius

K S_--vol of total cluster / volume of negativ charge
13 -3
For w_ 2z 3.(0° om &W(Z%)MJO

P.F.Lugakov and V.V.Shusha Rad. Effects vol.62 p197 (1982)
and Stefanov et al. Phys.stat. sol.(a) vol 163 p27 (1997)
find

for clusters

s, S

and 6r/8 ~ )% electron irradiated Si

This yields K, %Lq for 2kOhmem Si

MMoll needs 6




3.2 DLTS measurements

Careful with interpretation, since charging of traps in potential
well of clusters not guaranteed

Capture rate of carriers >> thermal release of carriers

LV. Antonova et al. Sov.Phys.Semicond. vol.22(6) p630 (1988)
Broadening + temperature shift of E peak
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_ ‘Fig. 1. DI_’!‘S s,r.-cct.ra of non-irradiated sample (a); irradiated with a fiuence
- 0f 5.5 x 10" n/ecm? (b); and with a fluence of 1.0 X 10" n/em? (c)




- E1 E2 | E3 E4 |<GCe-em’

Before radiation [ 0.21 0.31 0.49

After 5.510 E11 043 | 2.E-1s

After 10E12 ) 033 | 2E-17
Extend of cluster space charge layer (CSCL) ~ 3 microns
Debeye length

Overlap of CSCL after a fluence 10E12 cm-2
Fabrication defects (shallow) masked by local potential

3.3 Annealing of D in Si containing clusters

3.31 L.V.Antonova et al. Sov.Phys.Semicond. vol .23 p671 (1989)

fy rel.units
o
w
I

O,.":

rann ’-c

CZ witas 10™ b=%"
& yu 1077 ot o < 2204




observation: anneal in 2 stages
250 -350°C  classical Ea'=1.5e“/
100 -200C smooth / different mef:hanisme
at120C 1L,—» T 4+ T
I+Co—> <, <

C,—» lonesler (Jﬁ\cz«'n)

3.31 Peculiar observations

V.I. Kuznetsov et al. Rad. Effects Lett. Vol.86 p199 (1984)
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PECULIARITIES OF DIVACANCY ANNEALING 9
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Indirect proof of C;annealing: more than 2 times of C; goes into
cluster
Effect of strain field: Ci_cause Jattice compression

D cause lattice tension

3.3 Annealing of ROSE detectors

Concentration(cm-3)

Z.Li et al. NIM A 385 p321 (1997)
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4. Model for positive and negative annealing

Be cautious!! Might be crab!!

Suppose: main defect D distributed as point defects in matrix

or forming a cluster
potential barriers and strain field around cluster

irradiation produces Interstitials which go to sinks

1+ Cg —> C,
I1+0V — O,
Sinks I+V2 —_

I+Ps — P

L

C‘.'are mobile and get eventually settled in
o C;_CS
Sinks GO
D in cluster
D in matrix (?)

4.1 Positive annealing: destruction.of D in vacancies by C

4.2 Negative annealing : destruction of D in clusters by C
Why??

Because destruction of D lowers potential barrier and more
Charged D become visible

12




I.V.Antonova et al. Sov.Phys.Semicond. vol.23 p 944 (1989)

d”/d@,lcm"l ;

1200
o<
<
700
. | fevperatine
_u;al?-f T 727 e

g DTS peak

I, cm™ “ s

L.V.Antonova and S.S. Shaimeev, Sov.Phys.Semicond. vol.25 p513

(1991)
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L.V.Antonova et al. Sov.Phys.Semicond. vol.22 p630 (1988)

have shown that q{-ax 2 % 67_D

if D goes down D goes up D
since A 5/ ~ A‘
. )
AV{H ‘N(’:hanges strongly when few D left

this is reason why negative annealing delayed

4.3 Some experimental facts in favor of model

4.31 decrease of overall D measured by positron lifetime and
infrared technique during annealing

4.32 Thesis M. Moll (1999) p198

1’ o
peak H(116K) / assignmentto C,/
because C pushed in by strain field and gets immobile

—

appearance of small peak VZ_

CLO‘./and probably C: CS go up

Unexplained time behavior of reverse annealing

S,. Conclusion and Outlook

some properties of clusters are able to explain peculiar behavior
of our measurements; it has to be proven that clusters produced
in ROSE detectors behave as the ones found in low resistivity
material
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in particular geometrical complications are expected due to the
great Debeye length in ROSE detectors. (merging of the periphery
of clusters)

qualitative picture: further thinking if correct; refine or amend

quantitative model : needs description of primary cluster with
input from experiment ( probably dedicated)
since cluster shape depends also on chemical impurities whole kinetic of
V and I- diffusion must be implemented
Calculate cluster size and number of D
Do point defect kinects in periphery of cluster
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