5th ROSE Workshop - CERN 16/17 March 2000

Irradiation test of Silicon detectors with 7-10 MeV protons - First results -

D.Bechevet^a, M.Glaser^b, A.Houdayer^a, C.Lebel^a, C.Leroy^a, F.Marullo^a, <u>M.Moll^a</u>, P.Roy^b

^a Universite de Montreal, Montreal(Quebec), Canada
 ^b CERN EP, Geneva Switzerland
 RD48/ROSE Collaboration

Most measurements performed by **Patrick Roy**, who can not be here because he is having the Defense of his thesis today (Good luck !)

Material / Diodes / Irradiation

- Wacker silicon
- Orientation: <100>
- Resistivity: 2 KΩcm
- Diode producer: **ST Microelectronics** ROSE mask
- No oxygen enrichment SIMS (150µm) \Rightarrow [O] = 9 × 10¹⁵ cm⁻³, [C] < 3 × 10¹⁵ cm⁻³
- Irradiation with 7, 8, 9, 10 MeV protons
- Fluence range: $1 \times 10^{10} \text{ p/cm}^2$ to $5 \times 10^{13} \text{ p/cm}^2$ (all given fluences not normalized to NIEL)
- Measurements: IV,CV, annealing at 80°C DLTS (see talk of Martin Kuhnke)
- Goal: Does NIEL work for low energy protons ?

- "Very high ratio of point defects to clusters" -

Increase of Leakage Current

• Leakage Current measured at full depletion directly after irradiation (left) and

after annealing of 4min at 80°C (right)

α -value

• α-value for 9 MeV protons measured directly after irradiation (left) and

after annealing of 4min at 80°C (right)

α -value - Hardness factor

• Leakage Current measured at full depletion (preliminary data)

Energy / Particle	α (after irrad.)	α (4 min 80°C)	hardness factor	hardness factor
	$[10^{-17} \text{A/cm}]$	$[10^{-17} \text{A/cm}]$	(leakage current)	(damage function)
				D(E)/95 MeVmb
7 MeV proton	21.4	17.2	3.8	5.3
8 MeV proton	16.9	13.2	2.9	4.8
9 MeV proton	17.4	13.3	2.9	4.3
10 MeV proton	16.1	11.2	2.5	4.0
23 GeV proton		2.68	0.6	≈ 0.5
1 MeV neutron		4.56	1	1
(used as reference)		(reference)	(reference)	(95 MeVmb)

- α-value does not scale with NIEL for low energy protons
 (α-value measured for 1MeV neutrons was taken as reference)
- α -value 30 to 40% smaller than expected from NIEL

Change of effective doping concentration

• Effective doping concentration measured directly after irradiation (left) and

after annealing of 4min at 80°C (right)

Damage parameters for ΔN_{eff}

• Parameters extracted from fit to data

Energy / Particle	$\frac{N_d}{[10^{11} cm^{-3}]}$	β [10 ⁻² cm ⁻¹]	$[10^{-14} \text{cm}^2]$	hardness factor κ determined from β	hardness factor (damage function) D(E)/95 MeVmb	hardness factor (leakage current)
7 MeV proton	18.4	4.80	19.3	5.2	5.3	3.8
8 MeV proton	18.4	4.27	17.2	4.7	4.8	2.9
9 MeV proton	18.6	4.35	17.0	4.7	4.3	2.9
10 MeV proton	18.3	(4.3)	(13.6)	4.7	4.0	2.5
1 MeV neutron (used as reference)		0.55		reference with $\kappa = 0.6$		0.6

β-value scales with NIEL for low energy protons
 (β-value measured for 24GeV/c protons was taken as reference)

Change of effective doping concentration

• Annealing of depletion voltage / effective doping concentration

• Fluence: $3.0 \times 10^{13} \text{ p/cm}^2$ for 7,8,9,10 MeV protons $4.9 \times 10^{13} \text{ p/cm}^2$ for 24 GeV/c protons

Damage parameter g_v (reverse annealing)

Parameter extracted from fit to data

Energy / Particle	g _y [cm ⁻¹]	hardness factor κ determined from g_y	hardness factor (damage function) D(E)/95 MeVmb	hardness factor κ determined from β	hardness factor (leakage current)
7 MeV proton	0.23	5.7	5.3	5.2	3.8
8 MeV proton	0.20	4.9	4.8	4.7	2.9
9 MeV proton	0.18	4.5	4.3	4.7	2.9
23 GeV protons	0.04	reference with			
(used as reference)		κ = 0.6			

g_y scales with NIEL for low energy protons (g_y measured for 24GeV/c protons was taken as reference)

Conclusions

- Extraction of damage parameters for standard material irradiated with low energy protons
- α-value does not scale with NIEL for low energy protons (7-10 MeV) (if α-value for 1MeV neutrons is taken as reference) measured values too low by about 30-40 %
- Damage parameters β and g_y do scale with the NIEL for low energy protons (7-10 MeV)